High Field Superconducting Magnets for Accelerators — Thinking outside the Box

Tom Taylor CERN

Erice Workshop, October 26 - 31, 2003

Accelerator Energy and Magnetic Field

$$F = q \cdot v \cdot B = mv^2 / \rho$$

$$p = q \cdot \rho \cdot B$$

$$P [TeV/c] = 0.3 \cdot \rho [km] \cdot B[Tesla]$$
Large Radius and High Field

Dipole Magnets from 3 to 9 T

HERAB = 4.7 T
BORE : 75 mm

B = 4.5 T Bore : 76 mm

RHIC B = 3.5 T Bore : 80 mm

LHC B = 8.3 T Bore : 56 mm

SSC B = 6.6 T Bore : 50-50 mm

LHC Twin Aperture Dipoles

Twin aperture: space saving, cost saving,
 (First proposed by John Blewett (BNL))

High Field Gradient Quadrupoles at Beam Interaction Regions

KEK

Fermilab⁵

SC Accelerators and Dipole Field

	Energy [TeV/Beam]	Field Op. [Tesla]	Tunnel [km]	Status [year]
СВА	0.4	5	3.8	Cancelled (1983)
Teva- tron	0.9	4.4	6.3	Operated (1987)
HERA	0.92	4.7	6.3	Operated (1989)
SSC	20	6.8	87	Cancelled (1993)
RHIC	0.1	3.5	3.8	Operated (1999)
LHC	7	8.3	27	Operation (2007)

Comments

Note the small size of the Tevatron magnet!

Scaling up the field and gradient in cold iron magnets will make them large and heavy.

We should not exclude a return to warm iron, or a combination of warm and cold iron

Dipole and Quadrupole Field Generated by Current Distribution

- A cylindrical $\cos n\theta$ current distribution, where θ = azimuthal angle (as also given by superimposed ellipses) provides
 - Dipole (n = 1), quadrupole (n = 2) and Higher Order Multipole Fields
 - High current density is essentially required for higher field
 - Very precise field quality (dB/B < 10⁻⁴) required for beam handling

Cosθ and Cos2θ Coil Designs

• Most superconducting particle accelerator magnets rely on saddle-shaped coils, which, in their long straight section, approximate $\cos\theta$ or $\cos2\theta$ distributions of the conductor

Comment

- Intersecting ellipses <-> block design
- $\cos\theta$ distribution <-> $\cos\theta$ design
- Stress map in the block design appears to favor this geometry for very high fields and modest aperture
 - need to know
 stress sensitivity vs. background field

Status of NbTi Magnets

- Jc (NbTi) achieved
 - $\sim 3 \text{ kA/mm}^2 \text{ (a) } 5 \text{ K, } 4.2 \text{ K,}$
- Engineering coil current density
 - $-300 \sim 500 \text{ A/mm}^2$
- State-of-the-art design: Cos θ and cold iron
- Magnetic field that can be reached
 - $-\sim 7$ T at 4.2 K
 - ~ 9 T at 1.9 K (present practical limit)

Progress in NbTi and NB₃Sn Conductor for Accelerator Applications

- E. Barzi et al, Fermilab TD-01-013, (2001)
- G. Sabbi (MT-18), M. Lamms (ASC-2002)

Progress in Accelerator Dipoles

Dipole	Coil Config.	Coil Config.	Bore Field	Coil Field
RHIC	NbTi	Cos θ	3.5	4.5
Tevatron	NbTi	Cos θ	4.4	5.5
HERA	NbTi	Cos θ	4.7	5.6
Texas A&M	NbTi	Block	6.5	6.5
SSC (50 mm)	NbTi	Cos θ (50 mm)	6.6	~7
KEK (1.9 K)	NbTi	Block	9.4	10.4
KEK (1.9 K)	NbTi	Cos θ (50 mm)	10.3	
LHC (1.9 K)	NbTi	Cos θ (56 mm)	10.5	
CERN (1.9 K)	NbTi	Cos θ (56 mm)	10.1	
CERN (1.9 K)	NbTi	Cos θ (88 mm)	9.6	

KEK NbTi Block Dipole

- Peak field 10.4 T.
- Central field 9.4 T

14

Comment

• Block design with turned-up ends is not new

Progress of Nb₃Sn Dipoles

Looking to the Future

- Nb₃Sn magnets for
 - LHC Luminosity Upgrade
 - Large Aperture, high gradient Quadrupoles
 - Future Energy Frontier beyond LHC

- HTS for future possibilities,
 - High intensity machine
 - Muon colliders and neutrino factories

IRQ Upgrade Design Study at LBNL

- $\cos \theta$ design
 - 90 mm bore, 1.9 K
 - ✓ Four layers fully keystoned Nb3Sn Cable

Why not other currents? Studies at Fermilab

Shell type dipole coil:

- o Single-layer
- o 45 mm bore with vertical ellipticity;
- o $11-12 \text{ T} \text{ at Jc}(12\text{T})=3\text{kA/mm}^2$
- o 90-100 kA
- o Field quality within 10⁻⁵
- o Same coil volume as 2-layer coil

Block type dipole coil:

- o Single-layer design with minimum turns
- o 45 mm bore
- o 11-12 T field at $Jc(12T)=3kA/mm^2$
- o 100-110 kA
- o Field quality within 10⁻⁵
- o Suitable for common coil design

Comment

• There is no magic in 10 - 20 kA

We must not confine ourselves to this current just because the test set up suits it – the cost of a new test set up would not be excessive

Main Coils of the Common Coil Design

Common Coil Design

- Simple 2-d geometry
 - with large bend radius
- Conductor friendly
 - no complex 3-d ends
- Compact
 - quadrupole type cross-section
- Block design
 - Simpler handling large Lorentz forces
- Combined function magnets
 - possible
- Efficient
 - Methodical R&D
 - Simple & modular design
- Minimum requirements
 - on expensive tooling and extensive labor
- Lower cost magnets expected

Comment

- The common coil design, though elegant, does not appear to be the best for very high field
 - Side-by-side is more convenient for twin aperture
 - Forces are more difficult to handle than in sideby-side block design
 - Peak field on conductor is higher
 - Field quality is harder to obtain

Are there other ideas out there?

This is a unique moment in time to think outside the box

- Example: how about combined function magnets? This was studied for LHC: interesting, but too late. Idea is now applied to J-PARC superconducting beam line for neutrino experiments (KEK-JAERI)
- Can be cost effective
 - Only one type of magnet to develop
- Higher energy for given tunnel length/diameter

Combined Function Superconducting Magnets

- Can be cost effective
 - Only one type of magnet to develop
- Higher energy for given tunnel length/diameter
- Example: J-PARC superconducting beam line for neutrino experiments at KEK-JAERI

Concept of Combined Dipole Field with Quadrupole

$$B_{y} = B_{D} + Q_{\text{grad}} \times x$$

$$= Q_{\text{grad}}(x - \Delta x)$$

$$\Delta x = -\frac{B_{D}}{Q_{\text{grad}}}$$

2D & End Electromagnetic Design (ROXIE optimization)

- B = 2.6 T
- G = 18.5 T/m
- $I = \sim 7kA$
- $L = \sim 15 \text{mH}$
- Quality <10⁻³
 - @ 5 cm

ROXIE..

Acknowledge to ROXIE S. Russenschuck et al) to make the design possible

Can some Features of Detector Magnets be imported?

- Al-stabilized superconducting coils
- Indirect cooling, forced flow 2-phase helium or thermo-siphon cooling
- Quench propagation strips of pure Al

Progress of Al-stabilized SC

Roles of Aluminum Stabilizer

- Stabilizer for Superconductor
 - Low Resistivity
- Energy absorber with Joule Heating in case of quench
 - Large heat capacity / mass
- Transparency / Light weight
 - Low Z, and low density

High-Strength Aluminum Stabilizer has been developed

Can we find a use for it?

Electrical and Thermal Characteristics of Aluminum

Aluminum can provide a very wide range characteristics, depending on the purity (or RRR)

Fast Quench Propagation by using pure-Al Strips

Circumferential Velocity:

$$\mathbf{V}\phi = (\mathbf{J}/\gamma\mathbf{C}) \cdot \{\mathbf{L}_0\mathbf{T}_s/(\mathbf{T}_c-\mathbf{T}_o)\}^{1/2}$$

Axial Velocity:

$$V_z = (k_z/k_\phi)^{1/2} \cdot v_\phi$$

To improve Z propagation;

Axial Pure Al-strip useful !!

Axial Pure-Al strip useful to homogenize Coil temperature

Conclusion

- NbTi Accelerator magnets @ 1.9 K well established
- Nb3Sn magnets expected for beyond 10 T
- Nb3Sn dipole has achieved > 15 T at LBNL

Future

- Is warm iron worth revisiting?
- Block vs. $\cos \theta$ debate: see "stress map" in the winding...
- Why 10 20 kA? Why not 5 kA or 50 100 kA?
- Combined function design?
- Can we make use of high-strength aluminum stabilizer? (from Large Scale Detector Magnet R&D) ~200 MPa
- Can we make use of pure Al "drains"?